首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   2篇
化学   25篇
力学   1篇
数学   8篇
物理学   6篇
  2023年   1篇
  2021年   6篇
  2020年   2篇
  2019年   3篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   2篇
  2013年   1篇
  2012年   3篇
  2011年   3篇
  2010年   4篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  1996年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有40条查询结果,搜索用时 203 毫秒
11.
Laser‐diode thermal desorption (LDTD) is an ionization source usually coupled to triple quadrupole mass spectrometry (QqQMS) and specifically designed for laboratories requiring high‐throughput analysis. It has been observed that surface coatings on LDTD microwell plates can improve the sensitivity of the analysis of small polar molecules. The objective of the present study is to understand and quantify the effect of microwell surface coatings on signal intensity of small organic molecules of clinical, environmental, and forensic interest. Experiments showed that the peak areas of diclofenac, chloramphenicol, salicylic acid, and 11‐nor‐9‐carboxy‐Δ9‐tetrahydrocannabinol obtained by LDTD‐QqQMS increased by up to 3 orders of magnitude when using microwells coated with ethylenediaminetetraacetic acid (EDTA). Tests with different chelating agents and polytetrafluoroethylene as microwell surface coatings showed that nitrilotriacetic acid gave significantly higher peak areas for five out of the nine compounds that showed signal enhancement using chelating agents as coatings. Scanning electron microscopy studies of EDTA‐coated and uncoated microwells showed that analytes deposited in the former formed more uniform and thinner films than in the latter. The enhancement effect of surface coatings in LDTD‐QqQMS was explained mainly by the formation of homogenous and thinner layers of nanocrystals of analytes that are easier to desorb thermally than the layers formed when the analytes dry in direct contact with the bare stainless‐steel surface. Chemisorption of some analytes to the stainless‐steel surface of the microwell plate appeared to be a minor factor. Surface coatings widen the number of compounds analyzable by LDTD‐QqQMS and can also improve sensitivity and limits of detection.  相似文献   
12.
13.
A localized modulated radiation force can be produced when two confocal ultrasound beams of nearly equal frequencies interfere in an attenuating medium such as tissue. It is well-established that this force generates both shear and longitudinal waves. By scanning the focal point over a plane and observing the propagation of these waves, the mechanical properties of the medium can be imaged. In this paper, the modulated radiation force is analytically derived in the case of attenuating media, by expanding on the theory of ultrasound-stimulated-vibro-acoustography (USVA) for lossless media. Furthermore, weak nonlinearities are considered in the formulation, since higher source pressures may prove to be necessary to improve the radiation-force profile – only the fundamental component is, however, studied in this paper. An analysis of the generated radiation force is performed and the effects of various parameters are investigated on its amplitude and spatial distribution. It will be shown that by carefully selecting the confocal geometry of the beams, as well as, the source pressure and center frequency, the spatial profile of the radiation force can be optimized. This, subsequently, could improve not only the resolution of the point-spread-function in USVA, but also, the profile of the shear waves in elastography applications.  相似文献   
14.
We analyze Wonderland—a model of demographic, economic and environmental interactions—by combining numerical simulations with basic ideas of geometric singular perturbation theory. This theory dealing with slow-fast dynamical systems helps us to gain new insights into the behaviour of the system. We give conditions for the occurrence of rapid environmental changes in Wonderland. Since the chosen approach is inherently geometric we also focus on the visualization of our results.  相似文献   
15.
Membrane-spanning nanopores are used in label-free single-molecule sensing and next-generation portable nucleic acid sequencing, and as powerful research tools in biology, biophysics, and synthetic biology. Naturally occurring protein and peptide pores, as well as synthetic inorganic nanopores, are used in these applications, with their limitations. The structural and functional repertoire of nanopores can be considerably expanded by functionalising existing pores with DNA strands and by creating an entirely new class of nanopores with DNA nanotechnology. This review outlines progress in this area of functional DNA nanopores and outlines developments to open up new applications.  相似文献   
16.
This study focuses on the solubility behaviors of CO2, CH4, and N2 gases in binary mixtures of imidazolium-based room-temperature ionic liquids (RTILs) using 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][Tf2N]) and 1-ethyl-3-methylimidazolium tetrafluoroborate ([C2mim][BF4]) at 40 degrees C and low pressures (approximately 1 atm). The mixtures tested were 0, 25, 50, 75, 90, 95, and 100 mol % [C2mim][BF4] in [C2mim][Tf2N]. Results show that regular solution theory (RST) can be used to describe the gas solubility and selectivity behaviors in RTIL mixtures using an average mixture solubility parameter or an average measured mixture molar volume. Interestingly, the solubility selectivity, defined as the ratio of gas mole fractions in the RTIL mixture, of CO2 with N2 or CH4 in pure [C2mim][BF4] can be enhanced by adding 5 mol % [C2mim][Tf2N].  相似文献   
17.
Fluctuation-based fluorescence correlation techniques are widely used to study dynamics of fluorophore labeled biomolecules in cells. Semiconductor quantum dots (QDs) have been developed as bright and photostable fluorescent probes for various biological applications. However, the fluorescence intermittency of QDs, commonly referred to as "blinking", is believed to complicate quantitative correlation spectroscopy measurements of transport properties, as it is an additional source of fluctuations that contribute on a wide range of time scales. The QD blinking fluctuations obey power-law distributions so there is no single characteristic fluctuation time for this phenomenon. Consequently, it is highly challenging to separate fluorescence blinking fluctuations from those due to transport dynamics. Here, we quantify the bias introduced by QD blinking in transport measurements made using fluctuation methods. Using computer simulated image time series of diffusing point emitters with set "on" and "off" time emission characteristics, we show that blinking results in a systematic overestimation of the diffusion coefficients measured with correlation analysis when a simple diffusion model is used to fit the time correlation decays. The relative error depends on the inherent blinking power-law statistics, the sampling rate relative to the characteristic diffusion time and blinking times, and the total number of images in the time series. This systematic error can be significant; moreover, it can often go unnoticed in common transport model fits of experimental data. We propose an alternative fitting model that incorporates blinking and improves the accuracy of the recovered diffusion coefficients. We also show how to completely eliminate the bias by applying k-space image correlation spectroscopy, which completely separates the diffusion and blinking dynamics, and allows the simultaneous recovery of accurate diffusion coefficients and QD blinking probability distribution function exponents.  相似文献   
18.
Thermosetting blends of an aliphatic epoxy resin and a hydroxyl‐functionalized hyperbranched polymer (HBP), aliphatic hyperbranched polyester Boltorn H40, were prepared using 4,4′‐diaminodiphenylmethane (DDM) as the curing agent. The phase behavior and morphology of the DDM‐cured epoxy/HBP blends with HBP content up to 40 wt % were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM). The cured epoxy/HBP blends are immiscible and exhibit two separate glass transitions, as revealed by DMA. The SEM observation showed that there exist two phases in the cured blends, which is an epoxy‐rich phase and an HBP‐rich phase, which is responsible for the two separate glass transitions. The phase morphology was observed to be dependent on the blend composition. For the blends with HBP content up to 10 wt %, discrete HBP domains are dispersed in the continuous cured epoxy matrix, whereas the cured blend with 40 wt % HBP exhibits a combined morphology of connected globules and bicontinuous phase structure. Porous epoxy thermosets with continuous open structures on the order of 100–300 nm were formed after the HBP‐rich phase was extracted with solvent from the cured blend with 40 wt % HBP. The DSC study showed that the curing rate is not obviously affected in the epoxy/HBP blends with HBP content up to 40 wt %. The activation energy values obtained are not remarkably changed in the blends; the addition of HBP to epoxy resin thus does not change the mechanism of cure reaction of epoxy resin with DDM. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 889–899, 2006  相似文献   
19.
The natural linear programming formulation of the maximum s-t-flow problem in path variables has a dual linear program whose underlying polyhedron is the dominant ${{\ensuremath{P_{s-t-{\rm cut}}}^{\uparrow}}}$ of the s-t-cut polytope. We present a complete characterization of ${{\ensuremath{P_{s-t-{\rm cut}}}^{\uparrow}}}$ with respect to vertices, facets, and adjacency.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号